Steel structures

INTRODUCTION Steel structures Structural elements Structural design **Design** methods Euro code **Chapter 2 LIMIT STATE DESIGN** Limit state design principles Limit states for steel design Working and factored loads Stability limit states Structural integrity Serviceability limit state deflection Design strength of materials Design methods for buildings

avath-Halla

Steel structures

Chapter 3 MATERIALS Structural steel properties Design considerations Steel sections Section properties Chapter 4 BEAMS Types and uses Beam loads Classification of beam cross-sections Bending stresses and moment capacity Lateral torsional buckling Shear in beams Deflection of beams Beam connections

vathstalla

Steel structures I

Chapter 5 COMPRESSION MEMBERS Types and uses Loads on compression members Classification of cross-sections Axially loaded compression members Beam columns Eccentrically loaded columns in buildings hapter 6 TENSION MEMBERS Uses, types and design considerations End connections Structural behaviour of tension members Design of tension members

-Ghavath-Hallak

Design examples

Jections Jes of connections Non-preloaded bolts Treloaded bolts Jelded connections Steel structures I Chapter 7 CONNECTIONS (1) (1) (1) (1) (1) (1) (1) welded connections Staller Stales On Participant and the second second

C. C.

Lever Charles Co.

S. Steller . Caller . Call

Level Contraction of the second secon

Les Contraction of the second second

Yelley. Charles Charles Co.

Seller Corport

Shayath-Hallak-

STEEL STRUCTURES

Introduction

Steel is most often used for structures where loads and spans are large and therefore is not often used for domestic architecture.

r-Ghayath-Hallak-

Steel structures include: Iow-rise and high-rise buildings, **1**- bridges, **1**- towers, **-** pylons, \Box - floors, \Box - oil rigs, etc. and are essentially composed of frames which support the self-weight, dead loads and external imposed loads (wind, snow, traffic, etc.)

GP

STEEL STRUCTURES -

Uses

Leger Charles

STEEL STRUCTURES – Uses

Dr.-Ghayath-Hallak-

Chicago airport terminal building.

STEEL STRUCTURES – Uses

STEEL STRUCTURES Introduction

The advantages 1- speed of construction :

Steel provides unbeatable speed of construction and off-site fabrication, there by reducing the financial risks associated with site-dependent delays.

2- high strength, high stiffness and good ductility :

steel construction, with its high strength to weight ratio, maximizes the useable area of a structure and minimizes self-weight, again resulting in cost savings.

3- Recycling

Recycling and reuse of steel also mean that steel construction is well-placed to contribute towards reduction of the environmental impacts of the construction sector. **4- high accuracy**

Disadvantages

- 1- low fire resistance
- 2- needs of higher educated personal

As mentioned earlier, steel Structures are composed of distinct elements:

1. Beams and girders: members carrying lateral loads in **bending** and **shear**.

3. *Struts, columns or stanchions*: members carrying axial loads in compression. These members are often subjected to **bending** as well as **compression**.

4. *Trusses and lattice girders*: framed members carrying lateral loads. These are composed of struts and ties.

5. Purlins: beam members carrying roof sheeting.

6. *Sheeting rails*: beam members supporting wall cladding.

Dr.-Ghayath-Hallak-

7. Bracing: diagonal struts and ties that, with columns and roof trusses, form vertical and horizontal trusses to resist wind loads and hence provided the stability of the building.

Joints connect members together such as the joints in trusses, joints between floor beams and columns or other floor beams. Bases transmit the loads from the columns to the foundations.

STEEL STRUCTURES STRUCTURAL DESIGN

For a given framing arrangement, the problem in structural design consists of:

- 1. Estimation of loading
- Analysis of main frames, trusses or lattice girders, floor systems, bracing and connections to determine axial loads, shears and moments at critical points in all members

 Design of the elements and connections using design data from step 2.

r-Ghayath-Hallak

4. Production of arrangement and detail drawings from the designer's sketches.

STEEL STRUCTURES DESIGN METHODS

Steel design may be based on three design theories: 1. Elastic design (*Working stress design*) 2. Plastic design (*Ultimate load design*) 3. Limit-state design **1-Elastic design** (Working stress design) is the traditional method and is still commonly used in the United States. Steel is almost perfectly elastic up to the yield point, and elastic theory is a very good method on which the method is based. Structures are analysed by elastic theory, and sections are sized so that the *permissible stresses* are not exceeded. (yielding or ultimate) stress Working stress \leq permissible stress \approx

 $\gamma_e \approx 1.7$ Elastic Safty Factore

Dr-Ghayath-Halla

STEEL STRUCTURES DESIGN METHODS The working stress methods of design required that the

stresses calculated from the most adverse combination of loads must not exceed the specified permissible stresses. **<u>2- Plastic theory (Ultimate load)</u>** developed to take account of behaviour past the yield point is based on finding the load that causes the structure to collapse. Then the working load is the collapse load divided by a load factor $\gamma_{\rm p}$. The ultimate load methods of designing steel structures required that the calculated ultimate load-carrying capacity of the complete structure must not exceed the most adverse combination of the loads obtained by multiplying the working loads by the appropriate load factors γ_p . Thus Σ (Working load $\times \gamma_{n}$) \leq Ultimate load

 $\gamma_p \approx 1.7$ Load Factor

r-Ghayath-Halla

STEEL STRUCTURES DESIGN METHODS

factor γ_n

<u>2- Plastic theory (Ultimate load)</u> This approach is based on plastic analysis in which the loads required to cause the structure to collapse are calculated (Ultimate loads). The reasoning behind this method is that, in most steel structures, particularly redundant ones, the loads required to cause the structure to collapse are somewhat larger than the ones which cause yielding. Design, based on this method, calculates the loading required to cause complete collapse and then ensures that this load (Ultimate loads) is greater than the applied loading (working loads); the ratio of collapse load to the maximum applied load (working loads) is called the *load*

Ultimate load / Working load = γ_p

-Dr-Ghayath-Hallak-

Eurocode program EN 1990: Basis of structural design Eurocode 2 EN 1992 – Design of concrete structures EN 1991-1 Eurocode 1: Eurocode 3 Actions on structures EN 1993: Design of steel structures Eurocode 4 Part 1: General actions EN 1994: Design of composite steel and Part 1-1: Densities, self weight concrete structures and imposed loads for buildings Eurocode 5 Part 1-3: Snow loads EN 1995: Design of timber structures Eurocode 6 Part 1-4: Wind actions EN 1996: Design of masonry structures Part 1-5: Thermal actions Eurocode 7 Part 1-6: Actions during Execution EN 1997: Geotechnical design Part 1-7: Accidental actions from impact Eurocode 8 and explosions EN 1998: Design of structures for earthquake Part 2: General actions resistance Traffic loads on Bridges Eurocode 9 EN 1999: Design of aluminium structures

Dr-Ghayath-Hallak-

EN 1993 is l	broken into 6 parts. Part 1 has 12 sub-parts:
EN 1993-1-1	Eurocode 3: Design of Steel Structures - Part 1-1: General rules and rules for buildings
EN 1993-1-2	Eurocode 3: Design of Steel Structures - Part 1-2: General rules – structural fire design
EN 1993-1-3	Eurocode 3: Design of Steel Structures - Part 1-3: General rules – cold formed thin gauge members and sheeting
EN 1993-1-4	Eurocode 3: Design of Steel Structures - Part 1-4: General rules – structures in stainless steel
EN 1993-1-5	Eurocode 3: Design of Steel Structures - Part 1-5: General rules – strength and stability of planar plated structures
FN 1993-1-6	without transverse loading Eurocode 3: Design of Steel Structures - Part 1-6: General
	rules – strength and stability of shell structures
EN 1993-1-7	Eurocode 3: Design of Steel Structures - Part 1-7: General rules – design values for plated structures subjected to out of plane loading
EN 1993-1-8	Eurocode 3: Design of Steel Structures - Part 1-8: General rules - design of joints
	Dr. Gnayath Hallak

EN 1993 is b	oroken into 6 parts. Part 1 has 12 sub-parts:
EN 1993-1-9	Eurocode 3: Design of Steel Structures - Part 1-9: General rules - fatique strength
EN 1993-1-10	Eurocode 3: Design of Steel Structures - Part 1-10: General rules – material toughness and through thickness
EN 1993-1-11	Eurocode 3: Design of Steel Structures - Part 1-11: General rules – design of structures with tension
EN 1993-1-12	Eurocode 3: Design of Steel Structures - Part 1-12: General rules -supplementary rules for high strength steels
EN 1993-2 EN 1993-3-1	Eurocode 3: Design of Steel Structures - Part 2: Bridges Eurocode 3: Design of Steel Structures - Part 3-1: Towers, masts and chimneys -towers and masts
EN 1993-3-2	Eurocode 3: Design of Steel Structures - Part 3-2: Towers, masts and chimneys - chimneys
EN 1993-4-1	Eurocode 3: Design of Steel Structures - Part 4-1: Silos, tanks and pipelines - silos
	Dr-Ghayath-Hallak

EN 1993 is broken into 6 parts. Part 1 has 12 sub-parts:

- EN 1993-4-1 Eurocode 3: Design of Steel Structures Part 4-1: Silos, tanks and pipelines - silos
- EN 1993-4-2 Eurocode 3: Design of Steel Structures Part 4-2: Silos, tanks and pipelines -tanks
- EN 1993-4-3 Eurocode 3: Design of Steel Structures Part 4-3: Silos, tanks and pipelines -pipelines
- EN 1993-5 Eurocode 3: Design of Steel Structures Part 5: Piling
- EN 1993-6 Eurocode 3: Design of Steel Structures Part 6: Crane supporting structures

BS EN 1993: Design of steel structures

Part 1-1: General rules and rules for buildings

- Chapter 1 General
- Chapter 2 Basis of Design
- Chapter 3 Materials
- Chapter 4 Durability
- Chapter 5 Structural analysis
- Chapter 6 Ultimate limit states
- Chapter 7 Serviceability limit states
- Annex A [informative] Method 1: Interaction factors kij for interaction formula in 6.3.3(4)
- Annex B [informative] Method 2: Interaction factors kij for interaction formula in 6.3.3(4)
- Annex AB [informative] Additional design provisions
- Annex BB [informative] Buckling of components of building structures

Dr-Ghayath-Hallak-

STEEL STRUCTURES **.IMIT-STATE DESIGN PRINCIPLES** 1- All separate conditions that make the structure unfit for use {either causing collapse (Yeilding-Buckling...) or Not (Excessive Deflection Vibration....)} are taken into account. 2. The design is based on the actual behaviour of materials and performance of structures and members in service.(the strengths are calculated using plastic theory, and postbuckling behaviour is taken into account. The effect of imperfections on design strength is also included.) 3- Ideally, design should be based on statistical methods with a small probability of the structure reaching a limit state. Partial factors of safety are introduced to take account of all the uncertainties in loads, materials strengths, approximations are used in design and imperfections in fabrication and erection

Di-Ghayath-Fallak

DES LIM	IGN METHODS	DES	IGN STON
Ultir	nate limit states	Se	rviceability limit states
1. St yi aı m	trength (including general ielding, rupture, buckling nd transformation into a nechanism)	5.	Deflection
2. Si ai	tability against overturning nd sway	6.	Vibration (e.g. wind-induced oscillation)
3. Fi	racture due to fatigue	7.	Repairable damage due to fatigue
4. B	rittle fracture	8.	Corrosion and durability
Wher are ex struct	n the ultimate limit states xceeded, the whole ture or part of it collapses.	wh stru nor tha	en exceeded, make the ucture or part of it unfit for mal use but do not indicate t collapse has occurred.
			Dr-Ghayath-Hallak-

WORKING AND FACTORED LOADS

Working loads

The working loads (specified, characteristic or nominal loads) are the actual loads the structure is designed to carry. These are normally thought of as the maximum loads that will not be exceeded during the life of the structure. In statistical terms, characteristic loads have a 95% probability of not being exceeded.

Factored loads for the ultimate limit states In accordance with EN1990, factored loads are used in design calculations for strength and equilibrium. Factored load = working or nominal load × relevant partial load

factor, γ_{F}

r-Ghayath-Hallak-

SERVICEABILITY LIMIT-STATE DE	FLECTION
Deflection of beams due to unfactored in	mposed loads
Cantilevers	Length/180
Beams carrying plaster or other brittle finish	Span/360`
All other beams (except purlins and sheeting rails)	Span/200
Purlins and sheeting rails	To suit the characteristics of particular cladding
Horizontal deflection of columns due to and wind loads	unfactored imposed
Tops of columns in single-storey buildings except portal frames	Height/300
In each storey of a building with more than one storey	Storey height/300
	C.
	-Dr-Ghayath-Hallak-

Mechanical Properties of Structural Steel

3.1 STRUCTURAL STEEL PROPERTIES

The steel used in structural engineering is a compound of approximately 98% iron and small percentages of carbon, silicon, manganese, phosphorus, sulphur, niobium and vanadium. Copper and chromium are added to produce the weather-resistant steels that do not require corrosion protection.

Increasing the carbon content increases strength and hardness but reduces ductility and toughness. Carbon content therefore is restricted to between 0,25% and 0,2% to produce a steel that is weldable and not brittle. The niobium and vanadium are introduced to raise the yield strength of the steel; the manganese improves corrosion resistance; and the phosphorus and sulphur are impurities.

-Dr-Ghayath-Hallak-

Mechanical Properti	es o	f S	tru	ctu	ral	Stee	Part Carl					
STRUCTURAL STEEL	PR	OP	PER	F	ES	27.7	17. J.			~		
S Structural steel. E Engineering steel. 235 Minimum yield strength (R_{eH}) in MPa at 16mm	Steel grades and	N	Minimu streng (MI	m yield th R _{eH} Pa)	4	Tensile R (M	strength m Pa)	Minim elor L _o	um pero ligation fracture = 5.65	centage after $\sqrt{S_0}$		
JR Longitudinal Charpy V-notch impacts 27 J at + 20°C	qualities	No	ominal (m	thickne m)	ess	Nominal (m	thickness m)	Nominal thickness (mm)				
J0 Longitudinal Charpy V-notch impacts 27 J		≤16	>16 ≤40	>40 ≤63	>63 ≤ 80	< 3	≥3 ≤ 100	≥3 ≤40	>40 ≤63	>63 ≤100		
at 0°C	S 235JR	235	225	215	215	360 to 510	360 to 510	26	25	24		
V-notch impacts 27 J	S 235J2	235	225	215	215	360 to 510	360 to 510	24	23	22		
at - 20°C K2 Longitudinal Charpy	S 275JR S 275J0	275 275	265 265	255 255	245 245	430 to 580 430 to 580	410 to 560 410 to 560	23	22	21		
V-notch impacts 40 J at - 20°C	S 275J2 S 355JR	275 355	265 345	255 335	245 325	430 to 580 510 to 680	410 to 560 470 to 630	21	20 21	19 20		
Hot-rolled steel grades and qualities according	S 355J0 S 355J2 S 355K2	355 355 335	345 345 345	335 335 335	325 325 325	510 to 680 510 to 680 510 to 680	470 to 630 470 to 630 470 to 630	20	19	18		
to EN 10025-2	S 450J0	450	430	410	390		550 to 720	17	17	17		
									CHE	uenz-		

STRUCTURAL STEEL PROPERTIES

Elastic properties of steel as material

- \Box Modulus of elasticity E = 210 GPa;
- \Box The elastic shear modulus G=81000Mpa, G=E/[2(1 + ν)]
- \Box Poisson's ratio in elastic range v = 0.3;
- \Box Coefficient of linear thermal expansion $\alpha = 12 \times 10^{-6}$ /°C;
- **□** Volumetric mass ρ = 7850 kg/m3.

Ductility requirements

Ductility is the ability of a material to undergo large deformation without breaking.

- NA to BS EN 1993-1-1 sets the following requirements:
- 1. Elastic global analysis
 - a. $f_u/f_y \ge 1.10$

b. Elongation at failure not less than 15% (on a gauge length of $5.65\sqrt{S_0}$, where S_0 is the original cross-sectional area)

-Dr-Ghayath-Hallak-

STRUCTURAL STEEL PROPERTIES Ductility requirements

c. $\varepsilon_u \ge 15 \varepsilon_v$, where ε_u is the ultimate strain and ε_v is the yield strain 2. Plastic global analysis Plastic global analysis should not be used for bridges. a. $f_u / f_v \ge 1.15$ b. Elongation at failure not less than 15% (on a gauge length of 5.65 $\sqrt{S_0}$, where S_0 is the original crosssectional area) $\varepsilon_{\nu} \varepsilon_{\mu} \ge 20 \varepsilon_{\nu}$, where ε_{μ} is the ultimate strain and ε_{ν} is the yield strain

-Ghayath-Jalla

3.3 STEEL SECTIONS 3.3.1 Rolled and formed sections

h × h 20 × 20– 200 × 200 **Equal angle**

used for bracing members, truss members and for purlins, side and sheeting rails. *h × b* 30 × 20– 200 × 150 **Unequal angle**

used for bracing members, truss members and for purlins, side and sheeting rails. *h × b* 133 ×102– 305 × 457 **Structural tee cut form UB**

used for truss members, ties and light beams.

Dr-Ghayath-Hallak-

Used in roof trusses, lattice girders, building frames and for purlins, sheeting rails, etc.

Dr-Ghayath-Hallak-

3.3 STEEL SECTIONS 3.4 SECTION PROPERTIES

SECTION PROPERTIES

UNIVERSAL BEAMS

Advance® UKB

DIMENSIONS

Dr.-Ghayath-Hallak-

REL

Section Designation	Mass per Metre	Depth of Section	Width of Section	Thic	kness	Root Radius	Depth between Fillets	Ration Local E	os for Buckling	Dimen	Surface Area			
				Web	Flange			Flange	Web	End Clearance	No	tch	Per Metre	Per Tonne
		h	b	t.	ų	. r .	d	G/4	c _w ∕t _w	С	N	n		
	kg/m	mm	mm	mm	mm	mm	mm			mm	mm	mm	m ²	m ²
1016 x 305 x 4 <mark>87 +</mark>	486.7	1036.3	308.5	30.0	54.1	30.0	868.1	2.02	28.9	17	150	86	3.20	6.58
1016 x 305 x 437 +	437.0	1026.1	305.4	26.9	49.0	30.0	868.1	2.23	32.3	15	150	80	3.17	7.25
1016 x 305 x 393 +	392.7	1015.9	303.0	24.4	43.9	30.0	868.1	2.49	35.6	14	150	74	3.14	8.00
1016 x 305 x 349 +	349.4	1008.1	302.0	21.1	40.0	30.0	868.1	2.76	41.1	13	152	70	3.13	8.96
1016 x 305 x 314 +	314.3	999.9	300.0	19.1	35.9	30.0	868.1	3.08	45.5	12	152	66	3.11	9.89
1016 x 305 x 272 +	272.3	990.1	~~0	16.5	31.0	30.0	868.1	3.60	-26	10	152	62	3.10	11.4
1016 x 305 x 249 +		980.1		16.5	26.0	-	868.1	1		10	`	56	3.08	~4
240 - 205 - 200					•									

MA BA

B-2

3.3 STEEL SECTIONS 3.4 SECTION PROPERTIES

SECTION PROPERTIES

UNIVERSAL BEAMS

Advance® UKB

PROPERTIES

Dr.-Ghayath-Hallak-

1

Section Designation	Second of A	Moment vrea	Rac of Gy	Radius of Gyration		stic ulus	Pla Mod	stic ulus	Buckling Parameter	Torsional Index	Warping Constant	Torsional Constant	Area of Section
	Axis V-V	Axis z-z	Axis v-v	Axis z-z	Axis v-v	Axis z-z	Axis v-v	Axis z-z					560001
									U	x	W	Ч _т	A
	cm ⁴	cm ⁴	cm	cm	cm ³	cm ³	cm ³	cm ³			dm ⁶	cm ⁴	cm ²
1016 x 305 x 487 +	1020000	26700	40.6	6.57	19700	1730	23200	2800	0.867	21.1	64.4	4300	620
1016 x 305 x 437 +	910000	23400	40.4	6.49	17700	1540	20800	2470	0.868	23.1	56.0	3190	557
1016 x 305 x 393 +	808000	20500	40.2	6.40	15900	1350	18500	2170	0.868	25.5	48.4	2330	500
1016 x 305 x 349 +	723000	18500	40.3	6.44	14300	1220	16600	1940	0.872	27.9	43.3	1720	445
1016 x 305 x 314 +	644000	16200	40.1	6.37	12900	1080	14800	1710	0.872	30.7	37.7	1260	400
101	554000	12	-	6.35	11200	934	12800	1470	0.872	35./		835	347
	21000			2	9820	784	117		961	31			3

Palle .

B-3

3.3 STEEL SECTIONS -3.4 SECTION PROPERTIES

Poutrelles I européennes (suite)

Dimensions: IPE 80 - 600 conformes à l'Euronorme 19-57; IPE A 80 - 600; IPE O 180 - 600; IPE 750 Tolérances: EN 10034: 1993 Etat de surface conforme à EN 10163-3: 1991, classe C, sous-classe 1

European I beams (continued)

Dimensions: IPE 80 - 600 in accordance with Euronorm 19-57; IPE A 80 - 600; IPE O 180 - 600; IPE 750 Tolerances: EN 10034: 1993 Surface condition according to EN 10163-3: 1991, class C, subclass 1

Europäische I-Profile (Fortsetzung)

Abmessungen: IPE 80 - 600 gemäß Euronorm 19-57; IPE A 80 - 600; IPE O 180 - 600; IPE 750 Toleranzen: EN 10034: 1993 Oberflächenbeschaffenheit gemäß EN 10163-3: 1991, Klasse C, Untergruppe 1

Désign Design Bezeich	ation ation nung		D Ab	imension messung	ns gen			Di	Surface Oberfläche					
	G kg/m	h mm	b mm	t _w mm	t í mm	r mm	A mm²	h _i mm	d mm	ø	Pmin mm	P _{max} mm	A _L m²/m	A _G m²/t
							x 10 ²							
IPE A 500*	79,4	497	200	8,4	14,5	21	101	468	426	M 24	100	112	1,741	21,94
IPE 500	90,7	500	200	10,2	16	21	116	468	426	M 24	102	112	1,744	19,23
IPE 0 500 ⁺	107	506	202	12	19	21	137	468	426	M 24	104	114	1,760	16,40
PFA SSO*	92,1	547	210	1	15,7	24	117	515,6	467,6	M 24	106	122	1,875	20,36
	106	550			- 2	24	134	E34 -	+176	M 24	110	122	קדאי	17,78
	122	554				24	1.					1.0-		

3.3 STEEL SECTIONS 3.4 SECTION PROPERTIES

22

Y B

Notations pages 211-215 / Bezeichnungen Seiten 211-215

on			Contraction of the			/ Section properties / Statische Kennwerte								Classification						1
		stro star	xe fort y- ong axis ke Achse	y y-y ⊧ y-y		SC	axe fa weak hwache	ible z-z axis z-z Achse z	÷z				El	pure	19	93	pure	1003-1003	113.3.199	1000-3000
G kg/m	ly mm ⁴	W _{el.y} mm ³	W _{pl.y} ♦ mm ³	iy mm	A _{vz} mm ²	l _z mm ⁴	W _{el.z} mm ³	W _{pl.z} ↓ mm ³	i _z mm	s _s mm	l _t mm ⁴	l _w mm ⁶	S 235	S 355	S 460	S 235	S 355	5 400	EN 10	ENI
	x 104	x 10 ³	x 10 ³	x 10	x 10 ²	x 10 ⁴	x 10 ³	x 10 ³	× 10		x 104	x 10°	Г							_
79,4	42930	1728	1946	20,61	50,41	1939	193,9	301,6	4,38	62,00	62,78	1125	1	1	•	4	4		-	
90,7	48200	1928	2194	20,43	59,87	2142	214,2	335,9	4,31	66,80	89,29	1249	1	1	1	3	4	4 -	H	H
107	57780	2284	2613	20,56	70,21	2622	259,6	408,5	4,38	74,60	143,5	1548	1	1	1	2	4 4	4 -	H	H
92,1	59980	2193	2475	22,61	60,30	2432	231,6	361,5	4,55	68,52	86,53	1710	1	1	•	4	4		-	
106	67120	2441	2787	22 25	72,34	2668	254,1	400,5	4,45	73,62	123,2	1884	1	1	1	4	4	4 -	H	H
23	79160	2847	-		7.69	3224	304,2	480,5			187,5	2302	1	1	1	2	4 4	4 -	H	H
1	8292 ⁰				1	3116	283,3					2/07	,							
\sim	2			7		18/	\sim													
	G kg/m 79,4 90,7 107 92,1 106 °3	G Ly mm ⁴ x 10 ⁴ 79,4 42930 90,7 48200 107 57780 92,1 59980 106 67120 73 79160 82920	G Ly Wel.y kg/m mm ⁴ mm ³ x 10 ⁴ x 10 ³ 79,4 42930 1728 90,7 48200 1928 107 57780 2284 92,1 59980 2193 106 67120 2441 °3 79160 2847 82920	G Ly Wel.y Wpl.y ⁺ kg/m mm ⁴ mm ³ mm ³ x 10 ⁴ x 10 ³ x 10 ³ 79,4 42930 1728 1946 90,7 48200 1928 2194 107 57780 2284 2613 92,1 59980 2193 2475 106 67120 2441 2787 °3 79160 2847	G Iy Wel.y Wpl.y ⁺ iy kg/m mm ⁴ mm ³ mm ³ mm x 10 ⁴ x 10 ³ x 10 ³ x 10 79,4 42930 1728 1946 20,61 90,7 48200 1928 2194 20,43 107 57780 2284 2613 20,56 92,1 59980 2193 2475 22,61 106 67120 2441 2787 22.35 3 79160 2847 2847 20.43	G Ly Wel.y mm³ mm³ iy Avz kg/m mm4 mm³ mm³ mm³ mm mm² x 104 x 103 x 103 x 10 x 102 79,4 42930 1728 1946 20,61 50,41 90,7 48200 1928 2194 20,43 59,87 107 57780 2284 2613 20,56 70,21 92,1 59980 2193 2475 22,61 60,30 106 67120 2441 2787 27.34 7.69 82920 82920 2847 3.69 3.69	G Ly Wel.y mm³ mm³ iy Avz Iz kg/m mm4 mm³ mm³ mm³ mm mm² mm4 x 104 x 103 x 103 x 10 x 102 x 104 79,4 42930 1728 1946 20,61 50,41 1939 90,7 48200 1928 2194 20,43 59,87 2142 107 57780 2284 2613 20,56 70,21 2622 92,1 59980 2193 2475 22,61 60,30 2432 106 67120 2441 2787 22.34 2668 "3 79160 2847 ".69 3224 82920 3116 3387	G Ly Wel.y Wpl.y ⁺ iy Avz Iz Wel.z kg/m mm ⁴ mm ³ mm ³ mm mm ² mm ⁴ mm ³ x 10 ⁴ x 10 ³ x 10 x 10 ² x 10 ⁴ x 10 ³ 79,4 42930 1728 1946 20,61 50,41 1939 193,9 90,7 48200 1928 2194 20,43 59,87 2142 214,2 107 57780 2284 2613 20,56 70,21 2622 259,6 92,1 59980 2193 2475 22,61 60,30 2432 231,6 106 67120 2441 2787 22.32 72,34 2668 254,1 73 79160 2847 769 3224 304,2 82920 3116 283,3 3387 3387	G Iy Wely Wply iy Avz Iz Welz Wplz* kg/m mm ⁴ mm ³ mm ³ mm ³ mm ² mm ⁴ mm ³ mm ³ x 10 ⁴ x 10 ³ x 10 ³ x 10 x 10 ² x 10 ⁴ x 10 ³ x 10 ³ 79,4 42930 1728 1946 20,61 50,41 1939 193,9 301,6 90,7 48200 1928 2194 20,43 59,87 2142 214,2 335,9 107 57780 2284 2613 20,56 70,21 2622 259,6 408,5 92,1 59980 2193 2475 22,61 60,30 2432 231,6 361,5 106 67120 2441 2787 72,34 2668 254,1 400,5 33 79160 2847 7 369 3224 304,2 480,5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G Ly Wel.y Wpl.y+ iy Avz Hz Wel.z Wpl.z+ iz ss H Lw Sign Sign Sign Sign Sign Sign Sign Sign	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2 Plan

323

3.3 STEEL SECTIONS 3.4 SECTION PROPERTIES

